
1

Transaction Processing:
Recovery

CPS 216

Advanced Database Systems

2

Announcements (April 28)

Homework #4 due today
Sample solution will be emailed to you by tomorrow
morning

Project demo period: April 28 – May 1
Remember to email me to sign up for a 30-minute slot

Final exam on Monday, May 2, 2-5pm
3 hours—no time pressure!
Open book, open notes
Comprehensive, but with emphasis on the second half of
the course and materials exercised in homework

Solution to sample final available

3

Review

ACID
Atomicity

Consistency

Isolation Concurrency control

Durability Recovery

4

Execution model

Before it can be operated upon, disk-resident data must first
be brought into memory

input(X): copy the disk block containing object X to memory

v = read(X): read the value of X into a local variable v
• Execute input(X) first if necessary

write(X, v): write value v to X in memory
• Execute input(X) first if necessary

output(X): write the memory block containing X to disk

CPU
Memory

Disk

X
Y…

X
Y…

Issued by transactions

Issued by DBMS

5

Failures

System crashes in the middle of a transaction T;
partial effects of T were written to disk

How do we undo T (atomicity)?

System crashes right after a transaction T commits;
not all effects of T were written to disk

How do we complete T (durability)?

Media fails; data on disk corrupted
How do we reconstruct the database (durability)?

6

Naïve approach

Force: When a transaction commits, all writes of this
transaction must be reflected on disk

Without force, if system crashes right after T commits, effects of T
will be lost

Problem: Lots of random writes hurt performance

No steal: Writes of a transaction can only be flushed to disk
at commit time

With steal, if system crashes before T commits but after some
writes of T have been flushed to disk, there is no way to undo
these writes

Problem: Holding on to all dirty blocks requires lots of memory

2

7

Logging

Log
Sequence of log records, recording all changes made to
the database

Written to stable storage (e.g., disk) during normal
operation

Used in recovery

Hey, one change turns into two—bad for
performance?

But writes are sequential (append to the end of log)

Can use dedicated disk(s) to improve performance

8

Undo/redo logging rules
Record values before and after each modification:
h Ti, X, old_value_of_X, new_value_of_X i
A transaction Ti is committed when its commit log record
h Ti, commit i is written to disk
Write-ahead logging (WAL): Before X is modified on disk,
the log record pertaining to X must be flushed

Without WAL, system might crash after X is modified on disk
but before its log record is written to disk—no way to undo

No force: A transaction can commit even if its modified
memory blocks have not be written to disk (since redo
information is logged)
Steal: Modified memory blocks can be flushed to disk
anytime (since undo information is logged)

9

Undo/redo logging example

read(A, a); a = a – 100;
write(A, a);
read(B, b); b = b + 100;
write(B, b);

A = 800
B = 400

700
500

<T1, start>
<T1, A, 800, 700>
<T1, B, 400, 500>
<T1, commit>

T1 (balance transfer of $100 from A to B)

Memory

A = 800
B = 400

Disk Log

700Steal: can flush
before commit

commit;

500

No force: can flush
after commit

No restriction on when memory blocks can/should be flushed

10

Checkpointing

Naïve approach:
Stop accepting new transactions (lame!)

Finish all active transactions

Take a database dump

Now safe to truncate the log

Fuzzy checkpointing
Determine S, the set of currently active transactions, and log
h begin-checkpoint S i

Flush all modified memory blocks at your leisure

Log h end-checkpoint begin-checkpoint_location i

Between begin and end, continue processing old and new
transactions

11

Recovery: analysis and redo phase

Need to determine U, the set of active transactions at time
of crash

Scan log backward to find the last end-checkpoint record
and follow the pointer to find the corresponding
h start-checkpoint S i

Initially, let U be S

Scan forward from that start-checkpoint to end of the log
For a log record h T, start i, add T to U

For a log record h T, commit | abort i, remove T from U

For a log record h T, X, old, new i, issue write(X, new)

Basically repeats history!

12

Recovery: undo phase

Scan log backward
Undo the effects of transactions in U
That is, for each log record h T, X, old, new i where T is
in U, issue write(X, old), and log this operation too (part
of the repeating-history paradigm)

Log h T, abort i when all effects of T have been undone

An optimization
Each log record stores a pointer to the previous log
record for the same transaction; follow the pointer chain
during undo

3

13

Physical vs. logical logging

Physical logging (what we have assumed so far)
Log before and after images of data

Logical logging
Log operations (e.g., insert a row into a table)

Smaller log records
• An insertion could cause rearrangement of things on disk

• Or trigger hundreds of other events

Sometimes necessary
• Assume row-level rather than page(block)-level locking

• Data might have moved to another block at time of undo!

Much harder to make redo/undo idempotent

See solution offered by ARIES

14

ARIES
“ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking and

Partial Rollbacks Using Write-Ahead Logging,” by Mohan et al. TODS 1992

Same basic ideas: steal, no force, WAL
Three phases: analysis, redo, undo

Repeats history (redo even incomplete transactions)

Better than our simple algorithm
CLR (Compensation Log Record) for transaction aborts
Redo/undo on an object is only performed when necessary →
idempotency requirement lifted → logical logging supported

• Each disk block records the LSN (log sequence number) of the last change

Can take advantage of a partial checkpoint
• Recovery can start from any start-checkpoint, not necessarily one that

corresponds to an end-checkpoint

15

Summary

Concurrency control
Serial schedule: no interleaving

Conflict-serializable schedule: no cycles in the precedence
graph; equivalent to a serial schedule

2PL: guarantees a conflict-serializable schedule

Strict 2PL: also guarantees recoverability

Recovery: undo/redo logging with fuzzy
checkpointing

Normal operation: write-ahead logging, no force, steal

Recovery: first redo (forward), and then undo (backword)

16

Review: XML
Data model: tree or graph (with ID/IDREF)

DTD (schema) is optional

Query languages: XPath (building blocks for other
languages: path expressions), XQuery (SQL-like), XSLT
(structural recursion)
XML-relational mapping: schema-oblivious (nodes/edges;
intervals; label-paths; Dewey order) vs. schema-aware
XML query processing: navigational (equality joins) vs.
structural (containment joins)
→ Path expression processing boils down to joins!

XML indexing: nodes/edges; intervals; paths; sequences;
structural

17

Review: query optimization or “goodification”?

Heuristics: push selections down; smaller joins first
→ Reduce the size of intermediate results

Cost-based
Query rewrite: merge blocks to get a bigger search space

Cost estimation: use statistics (e.g., histograms)

Search algorithm: dynamic programming (+ interesting
orders), randomized search, genetic programming, etc.

18

Review: transaction processing

ACID properties

Concurrency control
Locking-based: strict 2PL; handling deadlocks; multiple-
granularity locking; index and predicate locking

Validation-based, timestamp-based, multi-version

→ Trade-off: blocking versus aborts and restarts

Recovery
Steal: requires undo logging

No force: requires redo logging

WAL (log holds the truth)

