Transaction Processing:
Recovery

CPS 216

Advanced Database Systems

Announcements (April 28)

< Homework #4 due today

= Sample solution will be emailed to you by tomorrow
morning

% Project demo period: April 28 — May 1

= Remember to email me to sign up for a 30-minute slot
+ Final exam on Monday, May 2, 2-5pm

® 3 hours—no time pressure!

= Open book, open notes

= Comprehensive, but with emphasis on the second half of
the course and materials exercised in homework

% Solution to sample final available

Review

<+ ACID
= Atomicity.
= Consistency
= Isolation Concurrency control

® Durability ——————— 3 Recovery

Execution model

Memory
CPU |

< Before it can be operated upon, disk-resident data must first
be brought into memory

= input(X):~copy the disk block containing object X to memory
= y = read(X):

¢ Execute input(X) first if necess

value of X into a local variable v

Issued by transactions
= write(X, v): Il Xi
write(X, v): Write value v to X in mema Issued by DBMS

* Execute input(X) first if nece

= output(X) write the memory block containing X to disk

Failures

% System crashes in the middle of a transaction T
partial effects of 7' were written to disk
= How do we undo T (atomicity)?
« System crashes right after a transaction 7' commits;
not all effects of T' were written to disk
= How do we complete T (durability)?
< Media fails; data on disk corrupted

® How do we reconstruct the database (durability)?

Naive approach

% Force: When a transaction commits, all writes of this
transaction must be reflected on disk

= Without force, if system crashes right after 7' commits, effects of T'
will be lost

“ Problem: Lots of random writes hurt performance
< No steal: Writes of a transaction can only be flushed to disk
at commit time

= With steal, if system crashes before T commits but after some
writes of T have been flushed to disk, there is no way to undo
these writes

# Problem: Holding on to all dirty blocks requires lots of memory




Logging
<+ Log

= Sequence of log records, recording all changes made to
the database

= Written to stable storage (e.g., disk) during normal
operation

= Used in recovery
< Hey, one change turns into two—bad for
performance?
= But writes are sequential (append to the end of log)

= Can use dedicated disk(s) to improve performance

Undo/redo logging rules

< Record values before and after each modification:
(T, X, old_valne_of X, new _value of X )

< A transaction T is committed when its commit log record
( T, commit ) is written to disk

< Write-ahead logging (WAL): Before X is modified on disk,
the log record pertaining to X must be flushed
= Without WAL, system might crash after X is modified on disk

but before its log record is written to disk—no way to undo

< No force: A transaction can commit even if its modified
memory blocks have not be written to disk (since redo
information is logged)

+ Steal: Modified memory blocks can be flushed to disk

anytime (since undo information is logged)

Undo/redo logging example

Tl (balance transfer of $100 from A to B)

read(A, @); 2 = a — 100; Memory
write(A, a);

read(B, b); b = b + 100; A =900700
write(B, b); B = 400500
C()Hlmlt;

<T,, start>
<T,, A, 800,700>
<T,, B, 400,500>

Steal: can flush
before commit

<T,, commit>

No force: can flush
after commit

No restriction on when memory blocks can/should be flushed
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Checkpointing

< Naive approach:
= Stop accepting new transactions (lame!)
® Finish all active transactions
= Take a database dump
= Now safe to truncate the log
% Fuzzy checkpointing
= Determine S, the set of currently active transactions, and log
( begin-checkpoint S )
® Flush all modified memory blocks at your leisure
* Log ( end-checkpoint begin-checkpoint location )

® Between begin and end, continue processing old and new
transactions

Recovery: analysis and redo phase

% Need to determine U, the set of active transactions at time
of crash

% Scan log backward to find the last end-checkpoint record
and follow the pointer to find the corresponding
( start-checkpoint § )

% Initially, let U be §

% Scan forward from that start-checkpoint to end of the log
® For a log record ( 7T, start ), add T to U
* For a log record ( T, commit | abort ), remove T from U
®» For a log record { T, X, old, new ), issue write(X, new)

# Basically repeats history!

Recovery: undo phase

% Scan log backward
® Undo the effects of transactions in U
® That is, for each log record { T, X, old, new ) where T is

in U, issue write(X, o/d), and log this operation too (part
of the repeating-history paradigm)

= Log ( T, abort ) when all effects of T have been undone
= An optimization
= Each log record stores a pointer to the previous log

record for the same transaction; follow the pointer chain
during undo




Physical vs. logical logging

< Physical logging (what we have assumed so far)
= Log before and after images of data

% Logical logging
= Log operations (e.g., insert a row into a table)
= Smaller log records

* An insertion could cause rearrangement of things on disk
* Or trigger hundreds of other events
= Sometimes necessary
* Assume row-level rather than page(block)-level locking
* Data might have moved to another block at time of undo!
= Much harder to make redo/undo idempotent
& See solution offered by ARIES

ARIES

“ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking and
Partial Rollbacks Using Write-Ahead Logging,” by Mohan et al. TODS 1992

% Same basic ideas: steal, no force, WAL
% Three phases: analysis, redo, undo
= Repeats history (redo even incomplete transactions)
< Better than our simple algorithm
= CLR (Compensation Log Record) for transaction aborts
= Redo/undo on an object is only performed when necessary —
idempotency requirement lifted — logical logging supported
* Each disk block records the LSN (log sequence number) of the last change
= Can take advantage of a partial checkpoint

* Recovery can start from any start-checkpoint, not necessarily one that
corresponds to an end-checkpoint

Summary

< Concurrency control
® Serial schedule: no interleaving

= Conflict-serializable schedule: no cycles in the precedence
graph; equivalent to a serial schedule

= 2PL: guarantees a conflict-serializable schedule
= Strict 2PL: also guarantees recoverability
< Recovery: undo/redo logging with fuzzy
checkpointing
= Normal operation: write-ahead logging, no force, steal

= Recovery: first redo (forward), and then undo (backword)

Review: XML

< Data model: tree or graph (with ID/IDREF)
= DTD (schema) is optional

% Query languages: XPath (building blocks for other
languages: path expressions), XQuery (SQL-like), XSLT
(structural recursion)

< XML-relational mapping: schema-oblivious (nodes/edges;
intervals; label-paths; Dewey order) vs. schema-aware

< XML query processing: navigational (equality joins) vs.
structural (containment joins)
— Path expression processing boils down to joins!

< XML indexing: nodes/edges; intervals; paths; sequences;
structural
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Review: query optimization or “goodification”?

% Heuristics: push selections down; smaller joins first
— Reduce the size of intermediate results

% Cost-based
= Query rewrite: merge blocks to get a bigger search space
= Cost estimation: use statistics (e.g., histograms)

= Search algorithm: dynamic programming (+ interesting
orders), randomized search, genetic programming, etc.

Review: transaction processing

< ACID properties
< Concurrency control

= Locking-based: strict 2PL; handling deadlocks; multiple-
granularity locking; index and predicate locking

= Validation-based, timestamp-based, multi-version
— Trade-off: blocking versus aborts and restarts
% Recovery
= Steal: requires undo logging
= No force: requires redo logging
= WAL (log holds the truth)




