Transaction Processing:
Concurrency Control

CPS 216

Advanced Database Systems

Announcements (April 206)

% Homework #4 due this Thursday (April 28)

= Sample solution will be available on Thursday
% Project demo period: April 28 — May 1

® Remember to email me to sign up for a 30-minute slot
% Final exam on Monday, May 2, 2-5pm

® 3 hours—no time pressure!

= Open book, open notes

= Comprehensive, but with emphasis on the second half of the
course and materials exercised in homework

< Sample final (from last year) available

= Solution will be available on Thursday

Transactions

< Transaction: a sequence of operations with ACID properties

= Atomicity: TXs are either completely done or not done at all

= Consistency: TX’s should leave the database in a consistent state

® Isolation: TX’s must behave as if they are executed in isolation

® Durability: Effects of committed TXs are resilient against failures
< SQL transactions

-- Begins implicitly

SELECT ..;

UPDATE ...;

ROLLBACK | COMMIT;

Concurrency control
% Goal: ensure the “I” (isolation) in ACID

T, T,
read(A); read(A);
write(A); write(A);
read(B); read(C);
write(B); write(C);

commit; commit;
=2
A B C

Good versus bad schedules

Good! Bad! Good?
T, | T, T, | T, T, | T,
r(A4) 1(A4) 1(A4)
w(A) Read 400 (A) w(A)

«(B) Write w(A) Read 400 «(A)
w(B) 400 - 100 | W(A) grice w(A)
r(A) r(B) 400-50 r(B)

w(A) £(C) r(C)
t(C) w(B) w(B)
w(C) w(C) w(C)

Serial schedule

< Execute transactions in order, with no interleaving
of operations
* T,.1(A), T, wA), T,.(B), T, w(B), Ty.t(A), T,.-w(A),
T,.6(C), T, w(C)
* T,.1(A), Tow(A), Tr.(C), T, w(C), T,.r(A), T,.wiA),
T,.t(B), T,.w(B)
@ Isolation achieved by definition!

< Problem: no concurrency at all

< Question: how to reorder operations to allow more
concurrency

Conflicting operations

< Two operations on the same data item conflict if at
least one of the operations is a write

r(X) and w(X) conflict

w(X) and r(X) conflict

w(X) and w(X) conflict

r(X) and r(X) do not

r/w(X) and r/w(Y) do not

% Order of conflicting operations matters

= E.g., if T|.t(A) precedes T,.w(A), then conceptually, T,
should precede T,

Precedence graph

% A node for each transaction

< A directed edge from T} to T} if an operation of T;
precedes and conflicts with an operation of 7 in the
schedule

wln @ 2{n @

r(A) r(A), ’

e O WX O
e WA N

Conflict-serializable schedule

% A schedule is conflict-serializable iff its precedence
graph has no cycles

< A conflict-serializable schedule is equivalent to some
serial schedule (and therefore is “good”)
® In that serial schedule, transactions are executed in the
topological order of the precedence graph
® You can get to that serial schedule by repeatedly

swapping adjacent, non-conflicting operations from
different transactions

w(A) w(Ad)
£(B) Good: 1(B) Bad:
1O no cycle O cycle
w(B) w(B)
w(C) w(C)
10
Locking

% Rules

= If a transaction wants to read an object, it must first
request a shared lock (S mode) on that object

® If a transaction wants to modify an object, it must first
request an exclusive lock (X mode) on that object

= Allow one exclusive lock, or multiple shared locks

Mode of the lock requested

s [x
Mode of lock(s) S | Yes L No | Grane the lock?
currently held X L No [2o

by other transactions ~ Compatibility matrix

Basic locking is not enough
Add 1 to both A and B Tl T2 Multiply both 4 and B by 2

(preserve A=B) (preserves A=B)
lock-X(A)
Read 100 r(A)
Write 100+1 w(A
unlock(A)
Nock-X(A)
Possible schedule t(A) Read 101 a
under locking w(A) Write 101%2
unlock(A)
But still not lock-X(B)
conflict-serializable! (B) Read 100
w(B) Write 100%2
unlock(B)
lock-X(B) /]
Read 200 t(B) A#B!
Write 200+ 1 W(B;

unlock(B

Two-phase locking (2PL)

< All lock requests precede all unlock requests

= Phase 1: obtain locks, phase 2: release locks

1 T, T, 9I;
lock-XC) | 2PL guarantees a

o(A) conflict-serializable r(A4)

w(d) schedule w(d)
lock-X(B) «A)
unlock(4) lock-X(A) w(Ad)

r(A) o(B)
w(A) w(B)
lock-X(B) w(B)
r(B) w(B)
w(B)

«B) Cannot obtain the lock on B

w(B) until 7, unlocks

unlock(B) «*

Problem of 2PL

T T, .
‘ 2 < T, has read uncommitted

o) data written by T

w(A)
wA4) < If T aborts, then T', must
w(Ad)

B abort as well

w(B) . 0o
«B) % Cascading aborts possible if
wiB) other transactions have read

Abore! data written by T,

< Even worse, what if T, commits before T'?

= Schedule is not recoverable if the system crashes right
after T, commits

Strict 2PL

% Only release locks at commit/abort time

= A writer will block all other readers until the writer
commits or aborts

@ Used in most commercial DBMS (except Oracle)

Deadlocks

_L 1T Deadlock: cycle in the wait-for graph
lock-X(A)
(A)
WA | Jock-X(B)
(B) T, is waiting for T, . T, is waiting for T
w(B)
lock-X(B) | lock-X(A) ’ ,
—® T Deadlock!
w(B) w(A)

Dealing with deadlocks

< Impose an order for locking objects

® Must know in advance which objects a transaction will access
< Timeout

= If a transaction has been blocked for too long, just abort
< Prevention

= Idea: abort more often, so blocking is less likely

= Suppose T is waiting for 7"

¢ Wait/die scheme: Abort T'if it has a lower priority; otherwise 7" waits
* Wound/wait scheme: Abort T if it has a lower priority; otherwise 7" waits

< Detection using wait-for graph
= Idea: deadlock is rare, so only deal it when it becomes an issue
= When do we detect deadlocks?
= Which transactions do we abort in case of deadlock?

Implementation of locking

< Do not rely on transactions themselves to
lock/unlock explicitly
< DBMS inserts lock/unlock requests automatically

Transactions

Streams of operations

Insert lock/unlock requests
Operations with
lock/unlock requests

Lock table > Scheduler

Lock info for each object,
including locks currently held
and the request queue

Serializable schedule with no
lock/unlock operations

Multiple-granularity locks

% Hard to decide what granularity to lock Database
= Trade-off between overhead and concurrency Taples

< Granularities form a hierarchy Pages

< Allow transactions to lock at different Rows
granularity, using intention locks
= S, X: lock the entire subtree in S, X mode, respectively
= [S: intend to lock some descendent in S mode
= [X: intend to lock some descendent in X mode
» SIX (= S + IX): lock the entire subtree in S mode;
intend to lock descendent in X mode

Multiple-granularity locking protocol

Mode of the lock requested

S X 1S IX SIX
Mode of lock(s) S | Yes Yes

X
currently held s
by oth ! IS | Yes Yes | Yes | ves | Grant the lock?
y other transactions [y e T e
SIX Yes

Compatibility matrix
< Lock: before locking an item, 7" must acquire intention
locks on all ancestors of the item

= To get S or IS, must hold IS or IX on parent
® What if 7" holds S or SIX on parent?

= To get X or IX or SIX, must hold IX or SIX on parent
< Unlock: release locks bottom-up
< 2PL must also be observed

19

20

Examples

< T reads all of R
= T, gets an S lock on R
< T, scans R and updates a few rows

= T, gets an SIX lock on R, and then occasionally get an X
lock for some rows

 T; uses an index to read only part of R

= T gets an IS lock on R, and then repeatedly gets an S
lock on rows it needs to access

Phantom problem revisited

< Lock everything read by a transaction — reads are
repeatable, but may see phantoms

< Example: different average
= - T1: -- T2:

SELECT AVG(GPA)
FROM Student WHERE age = 10;

INSERT INTO Student

VALUES (789, 'Nelson', 10, 1.0);

COMMIT;
SELECT AVG(GPA)
FROM Student WHERE age = 10;
COMMIT;

= How do you lock something that does not exist yet?

22

Solutions

% Index locking
= Use the index on Student(age)

= T, locks the index block(s) with entries for age = 10

* If there are no entries for age = 10, T, must lock the index
block where such entries wonld be, if they existed!

% Predicate locking
= “Lock” the predicate (age = 10)
= Reason with predicates to detect conflicts

= Expensive to implement

Concurrency control without locking

% Optimistic (validation-based)
< Timestamp-based

< Multi-version (Oracle, PostgreSQL)

Optimistic concurrency control

< Locking is pessimistic
= Use blocking to avoid conflicts
= Overhead of locking even if contention is low
< Optimistic concurrency control
= Assume that most transactions do not conflict
= Let them execute as much as possible

= If it turns out that they conflict, abort and restart

Sketch of protocol

< Read phase: transaction executes, reads from the
database, and writes to a private space

% Validate phase: DBMS checks for conflicts with
other transactions; if conflict is possible, abort and
restart
® Requires maintaining a list of objects read and written by

each transaction

< Write phase: copy changes in the private space to

the database

Pessimistic versus optimistic

< Overhead of locking versus overhead of validation
and copying private space

< Blocking versus aborts and restarts

Ry

% “Concurrency control performance modeling: alternatives
and implications,” by Agrawal et al. TODS 1987
= Locking has better throughput for environments with
medium-to-high contention
= Optimistic concurrency control is better when resource
utilization is low enough

S

Timestamp-based

% Assign a timestamp to each transaction
® Timestamp order is commit order

% Associate each database object with a read
timestamp and a write timestamp

< When transaction reads/writes an object, check the
object’s timestamp for conflict with a younger
transaction; if so, abort and restart

% Problems
= Even reads require writes (of object timestamps)

= Ensuring recoverability is hard (plenty of dirty reads)

28

Multi-version concurrency control

< Maintain versions for each database object
® Each write creates a new version
= Each read is directed to an appropriate version
= Conflicts are detected in a similar manner as timestamp
concurrency control
% In addition to the problems inherited from
timestamp concurrency control
® Pro: Reads are never blocked

= Con: Multiple versions need to be maintained

@ Oracle and PostgreSQL use variants of this scheme

Summary

% Covered

= Conflict-serializability

= 2PL, strict 2PL

= Deadlocks

® Multiple-granularity locking

= Index and predicate locking

® Overview of other concurrency-control methods
< Not covered

= View-serializability

® Concurrency control for search trees (not the same as

multiple-granularity locking and tree locking)

