
1

Transaction Processing:
Concurrency Control

CPS 216

Advanced Database Systems

2

Announcements (April 26)

Homework #4 due this Thursday (April 28)
Sample solution will be available on Thursday

Project demo period: April 28 – May 1
Remember to email me to sign up for a 30-minute slot

Final exam on Monday, May 2, 2-5pm
3 hours—no time pressure!

Open book, open notes

Comprehensive, but with emphasis on the second half of the
course and materials exercised in homework

Sample final (from last year) available
Solution will be available on Thursday

3

Transactions

Transaction: a sequence of operations with ACID properties
Atomicity: TX’s are either completely done or not done at all

Consistency: TX’s should leave the database in a consistent state

Isolation: TX’s must behave as if they are executed in isolation

Durability: Effects of committed TX’s are resilient against failures

SQL transactions
-- Begins implicitly
SELECT …;
UPDATE …;
ROLLBACK | COMMIT;

4

Concurrency control

Goal: ensure the “I” (isolation) in ACID

A B C

T1:
read(A);
write(A);
read(B);
write(B);
commit;

T2:
read(A);
write(A);
read(C);
write(C);
commit;

5

Good versus bad schedules

T1 T2

r(A)
w(A)
r(B)
w(B)

r(A)
w(A)
r(C)
w(C)

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

T1 T2

r(A)
r(A)

w(A)
w(A)

r(B)
r(C)

w(B)
w(C)

Good! Good?Bad!

Read 400
Read 400

Write
400 – 100 Write

400 – 50

6

Serial schedule

Execute transactions in order, with no interleaving
of operations

T1.r(A), T1.w(A), T1.r(B), T1.w(B), T2.r(A), T2.w(A),
T2.r(C), T2.w(C)

T2.r(A), T2.w(A), T2.r(C), T2.w(C), T1.r(A), T1.w(A),
T1.r(B), T1.w(B)

Isolation achieved by definition!

Problem: no concurrency at all

Question: how to reorder operations to allow more
concurrency

2

7

Conflicting operations

Two operations on the same data item conflict if at
least one of the operations is a write

r(X) and w(X) conflict

w(X) and r(X) conflict

w(X) and w(X) conflict

r(X) and r(X) do not

r/w(X) and r/w(Y) do not

Order of conflicting operations matters
E.g., if T1.r(A) precedes T2.w(A), then conceptually, T1
should precede T2

8

Precedence graph

A node for each transaction

A directed edge from Ti to Tj if an operation of Ti

precedes and conflicts with an operation of Tj in the
schedule

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

T1 T2

r(A)
r(A)

w(A)
w(A)

r(B)
r(C)

w(B)
w(C)

T1

T2

Good:
no cycle

T1

T2

Bad:
cycle

9

Conflict-serializable schedule

A schedule is conflict-serializable iff its precedence
graph has no cycles

A conflict-serializable schedule is equivalent to some
serial schedule (and therefore is “good”)

In that serial schedule, transactions are executed in the
topological order of the precedence graph

You can get to that serial schedule by repeatedly
swapping adjacent, non-conflicting operations from
different transactions

10

Locking

Rules
If a transaction wants to read an object, it must first
request a shared lock (S mode) on that object

If a transaction wants to modify an object, it must first
request an exclusive lock (X mode) on that object

Allow one exclusive lock, or multiple shared locks

Mode of lock(s)
currently held

by other transactions

Mode of the lock requested

Grant the lock?
S X

S Yes No
X No No

Compatibility matrix

11

Basic locking is not enough
T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

unlock(A)

unlock(B)
lock-X(B)

Possible schedule
under locking

But still not
conflict-serializable!

T1

T2

Read 100

Write 100+1

Read 101

Write 101*2

Read 100

Write 100*2

Read 200

Write 200+1

Add 1 to both A and B
(preserve A=B)

Multiply both A and B by 2
(preserves A=B)

A ≠ B!

12

Two-phase locking (2PL)

All lock requests precede all unlock requests
Phase 1: obtain locks, phase 2: release locks

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

lock-X(B)

Cannot obtain the lock on B
until T1 unlocks

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

2PL guarantees a
conflict-serializable

schedule

3

13

Problem of 2PL

T2 has read uncommitted
data written by T1

If T1 aborts, then T2 must
abort as well

Cascading aborts possible if
other transactions have read
data written by T2

Even worse, what if T2 commits before T1?
Schedule is not recoverable if the system crashes right
after T2 commits

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

…
Abort!

14

Strict 2PL

Only release locks at commit/abort time
A writer will block all other readers until the writer
commits or aborts

Used in most commercial DBMS (except Oracle)

15

Deadlocks

T1 T2

r(A)
w(A)

r(B)
w(B)

r(B) r(A)
w(B) w(A)

T1

T2

Deadlock: cycle in the wait-for graph

T1 is waiting for T2 T2 is waiting for T1

lock-X(A)

lock-X(B)

lock-X(A)lock-X(B)
Deadlock!

16

Dealing with deadlocks
Impose an order for locking objects

Must know in advance which objects a transaction will access

Timeout
If a transaction has been blocked for too long, just abort

Prevention
Idea: abort more often, so blocking is less likely
Suppose T is waiting for T’

• Wait/die scheme: Abort T if it has a lower priority; otherwise T waits
• Wound/wait scheme: Abort T’ if it has a lower priority; otherwise T waits

Detection using wait-for graph
Idea: deadlock is rare, so only deal it when it becomes an issue
When do we detect deadlocks?
Which transactions do we abort in case of deadlock?

17

Implementation of locking

Do not rely on transactions themselves to
lock/unlock explicitly

DBMS inserts lock/unlock requests automatically

Scheduler

Serializable schedule with no
lock/unlock operations

Insert lock/unlock requests
Operations with
lock/unlock requests

Transactions
Streams of operations

Lock table

Lock info for each object,
including locks currently held
and the request queue

18

Multiple-granularity locks

Hard to decide what granularity to lock
Trade-off between overhead and concurrency

Granularities form a hierarchy

Allow transactions to lock at different
granularity, using intention locks

S, X: lock the entire subtree in S, X mode, respectively

IS: intend to lock some descendent in S mode

IX: intend to lock some descendent in X mode

SIX (= S + IX): lock the entire subtree in S mode;
intend to lock descendent in X mode

Database

Tables

Pages

Rows

4

19

Multiple-granularity locking protocol

Lock: before locking an item, T must acquire intention
locks on all ancestors of the item

To get S or IS, must hold IS or IX on parent
• What if T holds S or SIX on parent?

To get X or IX or SIX, must hold IX or SIX on parent

Unlock: release locks bottom-up
2PL must also be observed

Mode of lock(s)
currently held

by other transactions

Mode of the lock requested

Grant the lock?

S X IS IX SIX
S Yes Yes
X
IS Yes Yes Yes Yes
IX Yes Yes
SIX Yes

Compatibility matrix

20

Examples

T1 reads all of R
T1 gets an S lock on R

T2 scans R and updates a few rows
T2 gets an SIX lock on R, and then occasionally get an X
lock for some rows

T3 uses an index to read only part of R
T3 gets an IS lock on R, and then repeatedly gets an S
lock on rows it needs to access

21

Phantom problem revisited

Lock everything read by a transaction → reads are
repeatable, but may see phantoms
Example: different average

-- T1: -- T2:
SELECT AVG(GPA)
FROM Student WHERE age = 10;

INSERT INTO Student
VALUES(789, ‘Nelson’, 10, 1.0);
COMMIT;

SELECT AVG(GPA)
FROM Student WHERE age = 10;
COMMIT;

How do you lock something that does not exist yet?

22

Solutions

Index locking
Use the index on Student(age)
T2 locks the index block(s) with entries for age = 10

• If there are no entries for age = 10, T2 must lock the index
block where such entries would be, if they existed!

Predicate locking
“Lock” the predicate (age = 10)

Reason with predicates to detect conflicts

Expensive to implement

23

Concurrency control without locking

Optimistic (validation-based)

Timestamp-based

Multi-version (Oracle, PostgreSQL)

24

Optimistic concurrency control

Locking is pessimistic
Use blocking to avoid conflicts

Overhead of locking even if contention is low

Optimistic concurrency control
Assume that most transactions do not conflict

Let them execute as much as possible

If it turns out that they conflict, abort and restart

5

25

Sketch of protocol

Read phase: transaction executes, reads from the
database, and writes to a private space

Validate phase: DBMS checks for conflicts with
other transactions; if conflict is possible, abort and
restart

Requires maintaining a list of objects read and written by
each transaction

Write phase: copy changes in the private space to
the database

26

Pessimistic versus optimistic

Overhead of locking versus overhead of validation
and copying private space

Blocking versus aborts and restarts
“Concurrency control performance modeling: alternatives
and implications,” by Agrawal et al. TODS 1987

Locking has better throughput for environments with
medium-to-high contention

Optimistic concurrency control is better when resource
utilization is low enough

27

Timestamp-based

Assign a timestamp to each transaction
Timestamp order is commit order

Associate each database object with a read
timestamp and a write timestamp

When transaction reads/writes an object, check the
object’s timestamp for conflict with a younger
transaction; if so, abort and restart

Problems
Even reads require writes (of object timestamps)

Ensuring recoverability is hard (plenty of dirty reads)

28

Multi-version concurrency control

Maintain versions for each database object
Each write creates a new version

Each read is directed to an appropriate version

Conflicts are detected in a similar manner as timestamp
concurrency control

In addition to the problems inherited from
timestamp concurrency control

Pro: Reads are never blocked

Con: Multiple versions need to be maintained

Oracle and PostgreSQL use variants of this scheme

29

Summary

Covered
Conflict-serializability
2PL, strict 2PL
Deadlocks
Multiple-granularity locking
Index and predicate locking
Overview of other concurrency-control methods

Not covered
View-serializability
Concurrency control for search trees (not the same as
multiple-granularity locking and tree locking)

