XML Query Processing

CPS 216

Advanced Database Systems

Announcements (March 31)

< Course project milestone 2 due today
= Hardcopy in class or otherwise email please
< I will be out of town next week

® No class on Tuesday (April 5); will make up during
reading period

® Badrish Chandramouli will give the lecture
on Thursday (April 7)

<+ Homework #3 in less than two weeks (April 12)

< Reading assignment for next week will be assigned
through email

Overview

% Recall that XML queries based on path expressions
can be expressed by joins
< Node/edge-based representation (graphs)
® Equi-join on id’s
® Chasing pointers ~ index nested-loop joins
“Navigational” approach
< Interval-based representation (trees)
= “Containment” joins involving /left and right
= Sort-merge joins, zig-zag joins with indexes

““Structural” approach

Navigational processing in Lore

VLDB 1999

< Lore data model peculiarity: labels on edges instead of labels
on nodes
< Access paths in Lore
= Base representation: (parent, label) — child
= Label index: (child, label) — parent
= Edge index: label — (parent, child)
® Value index: (value, label) — node
= Path index: path expression — node
< Correspond to the following in a label-on-node model
= label/value — node
= (parent, label) — child
= child — parent

Navigational plans in Lore
//A/B/CL.=5]

< Top down: pointer chasing
® Start with //A, navigate down to //A/B and then to //A/B/C,
and then check values of C
< Bottom up: reverse pointer chasing
® Start with //C[.=5], navigate up to //B[/C[.=5]] and then to
//AL/B/CL.=5]]
< Hybrid: top down and bottom up, meet in middle
® Start with //A, navigate down to //A/B
® Start with //C[.=5], navigate up to //B[/C[.=5]]
= Intersect B nodes

In general, hybrid can combine multiple top-down and bottom-up
plans starting from anywhere in the path expression

Comparison of Lore navigational plans

s rs s ¥
o
I E L H
i) L B o B X
¥ v " > L El k v -
v v L L L L v L L

1l By P
< Which plan is best depends on the size of the int
results it generates

fered
ermediate

= Choose the optimal join order!
< Top down and bottom up are essentially index nested-loop
joins (“pure” navigation)

< Hybrid can use any join strategy to combine subplans

Niagara unnest

VLDB 2003
< Unnest: navigation-style processing using finite state
machines A B
A LB LA @

« Example: A/B \(‘f\‘ e
= Given a list of elements for which A/B needs to be evaluated
= Each state maintains a cursor

= For each given element, state 1 uses a CA (child-axis) cursor with
label A to iterate through all A children

= For each A child, state 2 uses a CA cursor with label B to iterate
through all B children of the A child

< Essentially a sequence of indexed nested-loop joins
= Top down or bottom up, but not hybrid

Alternative unnest strategies for //

% Example: A//B
% Using CA cursors only
*.u

/-\ A /-\ B
\\J/
% m“ B
% Using DA (descendent-axis) cursor

= Given node 7 and label A, a DA cursor iterates through
all 2/ /A nodes in document order

OO0

CA DA

Surprise with the DA cursor

% Recall that XPath expressions are supposed to
return result nodes in document order
% Example: /A//B/C
= DA enumerates descendents in document order

® But subsequent steps may produce out-of-order results

™

< Duplicates are also an issue

(e.g., query //A//B//C on
datga /qA/B)/,B/C/C) \®

10

Structural approach

< Binary containment joins (Al-Khalifa et al., ICDE 2002)
= Given Alist and Dlist, two lists of elements encoded with (Jef?,
right), with each list sorted by /left
= Find all pairs of (#, ¢), where @ € Alist and e € Dlist, such that « is
a parent (or ancestor) of e
+ Example query processing scenario: //book/author

= Using an inverted-list index, retrieve the list of book elements
sorted by /eft, and the list of author elements sorted by /Jeft

= Find pairs that actually form parent-child relationships

Tree-based algorithms

Algorithm Tree-Merge-Anc
Beginjoinable = 0;
For each @ in Alist:
Start from BeginJoinable and skip D/ist until the
first element with /left > a.left; update Beginjoinable;
Start from BeginJoinable and join each J from
Dlist with a; stop at the first d with left > a.right,

< An alternative algorithm, Tree-Merge-Desc, uses Dlist
as the outer table instead of A/isz, and requires
minor tweaks to conditions

Tree-Merge-Anc example

L “)L))L “)
A r
d, 4, dy dy dg
[|_d| [T B WL
(e

% a,: Beginjoinable = d,; stops at d

% a,: Beginjoinable = d,; stops at d

& a3: Beginfoinable = d; stops at dy

< ay: Beginjoinable = d

@ Further optimization is possible to avoid unnecessary
rescanning; though in general rescanning cannot be avoided

Worst case of Tree-Merge-Anc

pList < Optimal (up to a
constant factor) for //

AList -~
a a e 4 < Not optirnal for /
AN N
d|/"|‘2\\i:“)
d a d 1
2,73 el d
dy .l.- ‘Iln" . d“
| n+l
N
. Snet dap.z
{a) (b} d,

Worst case of Tree-Merge-Desc

_ AList % Not even optimal
DList)
Ao fOr //
' ~//* < Problem: linear
a B :
/\“ 4,7 3, access to Alist forces
- \ dy 7 ay unnecessary

a
n 0
| scanning

[T

dody 4 n @ Idea: create another
representation that
corresponds more
closely to a tree

traversal

d,
n n

Stack-based algorithms

Algorithm Stack-Tree-Desc

Start with an empty stack Astack

While Astack or Alist or Dlist is not empty:
If heads of both A/isz and D/ist come after the top of
Astack, pop Astack,
Else if the head of A/ist is contained by the top of
Astack, push it onto Astack and advance Alist;
Else join the head of D/ist with everything on Astack
and advance D/ist;

@ Output is ordered by D/ist

< An alternative algorithm, Stack-Tree-Anc, orders output by
Alist but requires more bookkeeping

Stack-Tree-Desc example

; d L
n whl D ; B
dyn .

@ Copying from A/list to Astack avoids the worst cases
of Tree-Merge-Anc and Tree-Merge-Desc

Twigs

< “Twigs” represent longer and possibly branching
XPath expressions
® Problem: find all instances of a given twig in a document

* More what XPath requires
//book[title="XML" and year="2000"]
//book[title="XML" and //author[fn="jane" and 1n="doe"]]

book book
/ \ / \ Double edges represent //
title year title author
XML 2000 XML in In
(z) (b)

jane doe

Holistic twig join

% Traditional approach: use a sequence of binary
containment joins to process a twig
% Problem: intermediate results can get much larger
than input and output sizes
= Example?
+ Idea: use a multi-way merge (since all joins are on
the same attributes)
= “Holistic” twig join (Bruno et al., SIGMOD 2002)

Compact encoding using stacks

< One stack for each node in the query twig
® Elements in a stack form a containment chain “—>
—_—
< Each stack element points to one in the parent stack

= Specifically, the top one that contains it

1 B.=A
Ci [By™A,
! Sc¢ Sa Sa
(c) Stack encoding
?2 A, B, C,
c, i| gz g|
2 B2 by
(a) Data (b) Query {d) Query results

—->—m—>
O=m=>

PathStack

+ Handles twigs with no branches g1//42//...//qn
 Input lists Ty, T, ..., T,, and stacks §;, S,

g T q2

§

1 Sg0 s Sy
% While T, is not empty:

Let T,,,, be the list whose head has smallest /ft;

Clean all stacks: pop while top’s right < head(T,,,;,).left;

Push head(T,,,,) on S,,,.,, with pointer to 10p(Spurengmin));

If ., is the leaf (g7), output results and pop S,,,.,;
% Check properties

= Elements in a stack form a containment chain

= Each stack element points to the top one in the parent stack that
contains it

Extending PathStack to TwigStack

< A first cut
= Decompose a twig into root-to-leaf paths
® Process each path using PathStack

= Merge solutions for all paths

% Problem: intermediate results may be big

All authors will be returned
by PathStack, though
only the last one should be

in the final result

22

TwigStack

% Generate solutions for each root-to-leaf path
® Do not use ParhStack, which generates all solutions
= Modify PathStack to generate only solutions that are
parts of the final result (possible if twig contains only //)
Specifically, when pushing 5, onto stack S, ensure that

® b, has a descendent 4, in the each input list T, where g’ is a
child of ¢

® Bach 4, recursively satisfies the above property

< Merge solutions for all paths

TwigStack still suboptimal for /

% Example p
? B/\C
@) @ ©
) ©

% Desired result: (4,, B,, C,), (4,, B}, C))
+ Initial state: all three stacks empty; ready to push one of 4,
B,, C, onto a stack
< If we want to ensure that non-contributing nodes are never
pushed onto the stack, then
= Cannot decide on A, unless we see B, and C,

= Cannot decide on B, or C; unless we see A,

Optimization using an index

% Idea: if there are indexes on input lists ordered by /f?, use
these indexes to skip lists more efficiently

« Example: Niagara’s ZigZag join on A/ /B

AT
| |

A A A

|]]

B B B B

A
B B

= After advancing to the second A, use the index on B list to go
directly to the first joining B, instead of scanning B list linearly

= When processing a B, use the index on A list to skip

Summary of structural approach

< What makes XML containment joins easier than joining
lists of arbitrary intervals?

= Intervals form either disjoint or containment relationships, but
they cannot overlap

= This property is heavily exploited by stack-based algorithms
< Most algorithms in literature assume that bindings must be
produced for all nodes in a twig
® Unnecessary requirement in practice
= Leads to potentially much larger result sizes

®= Is it possible to have more efficient algorithms that produce
bindings for only selected nodes in a twig?

26

Navigational vs. structural approaches

+ In the past some has argued that structural is
preferable to navigational

+ Niagara argues for a mixed-mode approach, using a
cost-based analysis to pick which approach or
combination of approaches is better

= Just like one would implement both index nested-loop
join and sort-merge join

