
1

XQuery

CPS 216

Advanced Database Systems

2

Announcements (March 21)

Midterm has been graded

Homework #3 will be assigned next Tuesday

Reading assignment due next Wednesday
XML processing in Lore (VLDB 1999) and Niagara
(VLDB 2003)

Project milestone 2 due next Thursday

3

XQuery

XPath + full-fledged SQL-like query language
XQuery expressions can be

XPath expressions
FLWR () expressions
Quantified expressions
Aggregation, sorting, and more…

An XQuery expression in general can return a new
result XML document

Compare with an XPath expression, which always
returns a sequence of nodes from the input document or
atomic values (boolean, number, string, etc.)

4

A simple XQuery based on XPath

Find all books with price lower than $50

<result>
{

doc(“bib.xml”)/bibliography/book[@price<50]
}
</result>

Things outside {}’s are copied to output verbatim

Things inside {}’s are evaluated and replaced by the results
doc(“bib.xml”) specifies the document to query

The XPath expression returns a sequence of book elements

These elements (including all their descendents) are copied to
output

5

FLWR expressions

Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in doc(“bib.xml”)/bibliography/book
let $p := $b/publisher
where $b/year < 2000
return

<book>
{ $b/title }
{ $p }

</book>
}</result>

for: loop
$b ranges over the result sequence,
getting one item at a time

let: assignment
$p gets the entire result of
$b/publisher (possibly many nodes)

where: filter condition
return: result structuring

Invoked in the “innermost loop,” i.e.,
once for each successful binding of all
query variables

6

An equivalent formulation

Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in doc(“bib.xml”)/bibliography/book[year<2000]
return
<book>
{ $b/title }
{ $b/publisher }

</book>
}</result>

2

7

Another formulation

Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in doc(“bib.xml”)/bibliography/book,

$p in $b/publisher
where $b/year < 2000
return

<book>
{ $b/title }
{ $p }

</book>
}</result>

Is this query equivalent to the previous two?
Yes, if there is one publisher per book
No, in general

Two result book elements will be created for a
book with two publishers
No result book element will be created a book
with no publishers

8

Yet another formulation

Retrieve the titles of books published before 2000,
together with their publisher

<result>{
let $b := doc(“bib.xml”)/bibliography/book
where $b/year < 2000
return
<book>
{ $b/title }
{ $b/publisher }

</book>
}</result>

Is this query correct?
No!
It will produce only one output book
element, with all titles clumped together
and all publishers clumped together
All books will be processed (as long as one is
published before 2000

9

Subqueries in return

Extract book titles and their authors; make title an
attribute and rename author to writer

<bibliography>{
for $b in doc(“bib.xml”)/bibliography/book
return

<book title=“{normalize-space($b/title)}”>{
for $a in $b/author
return <writer>{string($a)}</writer>

}</book>
}</bibliography>

normalize-space(string) removes leading and trailing spaces from
string, and replaces all internal sequences of white spaces with one
white space

10

An explicit join

Find pairs of books that have common author(s)

<result>{
for $b1 in doc("bib.xml")//book
for $b2 in doc("bib.xml")//book
where $b1/author = $b2/author
return
<pair>
{$b1/title}
{$b2/title}

</pair>
}</result>

11

Existentially quantified expressions

(some $var in collection satisfies condition)
Can be used in where as a condition

Find titles of books in which XML is mentioned in
some section

<result>{
for $b in doc(“bib.xml”)//book
where (some $section in $b//section satisfies

contains(string($section), “XML”))
return $b/title

}</result>

12

Universally quantified expressions

(every $var in collection satisfies condition)
Can be used in where as a condition

Find titles of books in which XML is mentioned in
every section

<result>{
for $b in doc(“bib.xml”)//book
where (every $section in $b//section satisfies

contains(string($section), “XML”))
return $b/title

}</result>

3

13

Aggregation
List each publisher and the average prices of all its books

<result>{
for $pub in distinct-values(doc(“bib.xml”)//publisher)
let $price :=

avg(doc(“bib.xml”)//book[publisher=$pub]/@price)
return

<publisherpricing>
<publisher>{$pub}</publisher>
<avgprice>{$price}</avgprice>

</publisherpricing>
}</result>

distinct-values(collection) removes duplicates by value
• If the collection consists of elements (with no explicitly declared types), they

are first converted to strings representing their “normalized contents”

avg(collection) computes the average of collection (assuming each
item in collection can be converted to a numeric value)

14

Sorting (a brief history)

XPath always returns a sequence of nodes in original
document order

for loop will respect the ordering in the sequence

August 2002
Introduce an operator sort by (sort-by-expression-list) to output
results in a user-specified order

Example: list all books with price higher than $100, in order by
first author; for books with the same first author, order by title
<result>{

doc(“bib.xml”)//book[@price>100]
sort by (author[1], title)

}</result>

15

Tricky semantics
List titles of all books, sorted by their prices

<result>{
(doc(“bib.xml”)//book sort by (@price))/title

}</result>

What is wrong?
• A path expression always returns a sequence of nodes in document order!

Correct versions
<result>{

for $b in doc(“bib.xml”)//book sort by (@price)
return $b/title

}</result>

<result>{
doc(“bib.xml”)//book/title sort by (../@price)

}</result>

16

Current version of sorting

As of March 2005

sort by has been ditched

Add a new order by clause in FLWR (which now becomes
FLWOR)

Example: list all books with price higher than $100, in
order by first author; for books with the same first author,
order by title
<result>{
for $b in doc(“bib.xml”)//book[@price>100]
stable order by $b/author[1], $b/title empty least
return $b

}</result>

17

Summary
Many, many more features not covered in class
XPath is fairly mature and stable

1.0 is already a W3C recommendation
• Implemented in many systems
• Used in many other standards

2.0 is being developed jointly with XQuery

XQuery is still evolving
Still a W3C working draft
Some vendors are coming out with implementations
To become the SQL for XML?
XQuery versus SQL

• Where did the join go?
• Strong ordering constraints (can be overridden by unordered { for… })

