
1

Query Processing: A Systems View

CPS 216

Advanced Database Systems

2

Announcements (March 1)

� Reading assignment due Wednesday
� Buffer management

�Homework #2 due this Thursday

�Course project proposal due in one week

�Midterm next Thursday in class
� Open book, open notes

3

Announcements (March 3)

�No more reading assignment before midterm

�Homework #2 due today
� Will be graded by next Tuesday

�Midterm next Thursday in class
� Open book, open notes

� Everything up to (and including) today’s lecture

� Format similar to sample midterm from last year 
(available only in hardcopies; solution to be handed out 
next Tuesday), but shorter ☺

�Course project proposal due next Tuesday

4

Physical (execution) plan

�A complex query may involve multiple tables and 
various query processing processing algorithms
� E.g., table scan, index nested-loop join, sort-merge join, 

hash-based duplicate elimination…

�A physical plan for a query tells the DBMS query 
processor how to execute the query
� A tree of physical plan operators

� Each operator implements a query processing algorithm

� Each operator accepts a number of input tables/streams 
and produces a single output table/stream

5

Examples of physical plans

� Many physical plans for a single query
� Equivalent results, but different costs and assumptions!

)DBMS query optimizer picks the “best” possible physical plan

PROJECT (title)

INDEX-NESTED-LOOP-JOIN (CID)

Index on Enroll(SID)

Index on Course(CID)

Index on Student(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (SID)

PROJECT (title)

MERGE-JOIN (CID)

SCAN (Course)SORT (CID)

MERGE-JOIN (SID)

SCAN (Enroll)

SORT (SID)

SCAN (Student)

FILTER (name = “Bart”)

SELECT Course.title
FROM Student, Enroll, Course
WHERE Student.name = ‘Bart’
AND Student.SID = Enroll.SID AND Enroll.CID = Course.CID;

6

Physical plan execution

�How are intermediate results passed from child 
operators to parent operators?
� Temporary files

• Compute the tree bottom-up

• Children write intermediate results to temporary files

• Parents read temporary files

� Iterators
• Do not materialize intermediate results

• Children pipeline their results to parents



2

7

Iterator interface

� Every physical operator maintains its own execution 
state and implements the following methods:
� open(): Initialize state and get ready for processing

� getNext(): Return the next tuple in the result (or a null 
pointer if there are no more tuples); adjust state to allow 
subsequent tuples to be obtained

� close(): Clean up

8

An iterator for table scan

� open()
� Allocate a block of memory

� getNext()
� If no block of R has been read yet, read the first block from the 

disk and return the first tuple in the block (or the null pointer if R
is empty)

� If there is no more tuple left in the current block, read the next 
block of R from the disk and return the first tuple in the block (or 
the null pointer if there are no more blocks in R)

� Otherwise, return the next tuple in the memory block

� close()
� Deallocate the block of memory

9

An iterator for nested-loop join

R: An iterator for the left subtree

S: An iterator for the right subtree

� open()
R.open(); S.open(); r = R.getNext();

� getNext()
do {

s = S.getNext();
if (s == null) {
S.close(); S.open(); s = S.getNext(); if (s == null) return null;
r = R.getNext(); if (r == null) return null;

}
} until (r joins with s);
return rs;

� close()
R.close(); S.close();

NESTED-LOOP-JOIN

R S

10

An iterator for 2-pass merge sort
� open()
� Allocate a number of memory blocks for sorting
� Call open() on child iterator

� getNext()
� If called for the first time

• Call getNext() on child to fill all blocks, sort the tuples, and output a run
• Repeat until getNext() on child returns null
• Read one block from each run into memory, and initialize pointers to point 

to the beginning tuple of each block

� Return the smallest tuple and advance the corresponding pointer;
if a block is exhausted bring in the next block in the same run

� close()
� Call close() on child
� Deallocate sorting memory and delete temporary runs

11

Blocking vs. non-blocking iterators

�A blocking iterator must call getNext()
exhaustively (or nearly exhaustively) on its children 
before returning its first output tuple
� Examples: sort, aggregation

�A non-blocking iterator expects to make only a few 
getNext() calls on its children before returning its 
first (or next) output tuple
� Examples: filter, merge join with sorted inputs

12

Execution of an iterator tree

� Call root.open()
� Call root.getNext() repeatedly until it returns null

� Call root.close()

) Requests go down the tree

) Intermediate result tuples go up the tree

) No intermediate files are needed
� But maybe useful if an iterator is opened many times

• Example: complex inner iterator tree in a nested-loop join; “cache” its result 
in an intermediate file



3

13

Memory management for DBMS

� DBMS operations require main memory
� While data resides on disk, it is manipulated in memory

� Sometimes the more memory the better, e.g., sort

� One approach: let each operation pre-allocate some amount 
of “private” memory and manage it explicitly
� Not very flexible

� Limits sharing and reuse

� Alternative approach: use a buffer manager
� Responsible for reading/writing data blocks from/to disk as needed

� Higher-level code can be written without worrying about whether 
data is in memory or not

14

Buffer manager basics
� Buffer pool: a global pool of frames (main-memory blocks)
)Some systems use separate pools for different objects (e.g., tables 

and indexes) and for different operations (e.g., sorting and others)

� Higher-level code can pin and unpin a frame
� Pin: I need to work on this frame in memory
� Unpin: I no longer need this frame
� A completely unpinned frame is a candidate for replacement
)In some systems you can hate a frame (i.e., suggesting it for 

replacement)

� A frame becomes dirty when it is modified
� Only dirty frames need to be written back to disk
)Related to transaction processing

15

Standard OS replacement policies

� Example
� Current buffer pool: 0, 1, 2

� Past requests: 0, 1, 2

� Incoming requests: 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, …

)Which frame to replace?

� Optimal: replace the frame that will not be used for the 
longest time (2)

� Random (0, 1, or 2 with equal probability)

� LRU: least recently used (0)

� LRU approximation: clock, aging

� MRU: most recently used (2)

16

Problems with OS buffer management
Stonebraker. “Operating System Support for Database Management.” CACM, 1981.

� Performance problems
� Getting a page from the OS to user space is usually a system call 

(process switch) and copy

� Replacement policy
� LRU, clock, etc. often ineffective
� DBMS knows access pattern in advance and therefore should 

dictate policy → major OS/DBMS distinction

� Prefetch policy
� DBMS knows of multiple “orders” for a set of records; OS only 

knows physical order

� Crash recovery
� DBMS needs more control

17

Next
Chou and DeWitt. “An Evaluation of Buffer Management Strategies for 

Relational Database Systems.” VLDB 1985.

�Old algorithms
� Domain separation algorithm

� “New” algorithm

� Hot set algorithm

�Query locality set model

�DBMIN algorithm

18

Domain separation algorithm

� Split work/memory into domains; LRU within each domain; 
borrow from other domains when out of frames
� Example: one domain for each level of the B+-tree

� Limitations
� Assignment of pages to domains is static, and ignores how pages 

are used
• Example: A data page is accessed only once in a scan, but the same data 

page is accessed many times in a NLJ

� Does not differentiate relative importance between types of pages
• Example: An index page is more important than a data page

� Memory allocation is based on data rather queries → need 
orthogonal load control to prevent thrashing



4

19

The “new” algorithm

) Observations based on the reference patterns of queries
� Priority is not a property of a data page, but of a relation

� Each relation needs a “working set”

� Divide buffer pool into chunks, one per relation

� Prioritize relations according to how often their pages are 
reused

� Replace a frame from the least reused relation and add it to 
the chunk of the referenced relation

� Each active relation is guaranteed with one frame

� MRU within each chunk (seems arbitrary)

� Simulations look good; implementation did not beat LRU

20

Hot set algorithm
) Exploit query behavior more!
� A set of pages that are accessed over and over form a hot set
� “Hot points” in the graph of buffer size vs. number of page faults
� Example: For nested-loop join R S, size of hot set is B(S) + 1 

(under LRU)

� Each query is given enough memory for its hot set
� Admission control: Do not let a query into the system 

unless its hot set fits in memory
� Replacement: LRU within each hot set (seems arbitrary)
� Derivation of hot set assumes LRU, which may be 

suboptimal
� Example: What is better for nested-loop join?

21

Query locality set model

�Observations
� DBMS supports a limited set of operations

� Reference patterns are regular and predictable

� Reference patterns can be decomposed into simple 
patterns

� Reference pattern classification
� Sequential

� Random

� Hierarchical

22

Sequential reference patterns

� Straight sequential: read something sequentially once
� Example: selection on unordered table

)Each page is only touched once, so just buffer one page

� Clustered sequential: repeatedly read a “chunk” sequentially
� Example: merge join; rows with the same join column value are 

scanned multiple times

)Keep all pages in the chunk in buffer

� Looping sequential: repeatedly read something sequentially
� Example: nested-loop join

)Keep as many pages as possible in buffer, with MRU replacement

23

Random reference patterns

� Independent random: truly random accesses
� Example: index scan through a non-clustered (e.g., 

secondary) index yields random data page access
)The larger the buffer the better?

�Clustered random: random accesses that happen to 
demonstrate some locality
� Example: in an index nested-loop join, inner index is 

non-clustered and non-unique, while outer table is 
clustered and non-unique
)Try to keep in buffer data pages of the inner table 

accessed in one cluster

24

Hierarchical reference patterns

� Example: operations on tree indexes

� Straight hierarchical: regular root-to-leaf traversal

�Hierarchical with straight sequential: traversal 
followed by straight sequential on leaves

�Hierarchical with clustered sequential: traversal 
followed by clustered sequential on leaves

� Looping hierarchical: repeatedly traverse an index
� Example: index nested-loop join

)Keep the root index page in buffer



5

25

DBMIN algorithm

� Associate a chunk of memory with each file instance (each 
table in FROM)
� This chunk is called the file instance’s locality set

� Instances of the same table may share buffered pages

� But each locality set has its own replacement policy
)Based on how query processing uses each relation (finally!)

)No single policy for all pages accessed by a query

)No single policy for all pages in a table

� Estimate locality set sizes by examining the query plan and 
database statistics

� Admission control: a query is allowed to run if its locality 
sets fit in free frames

26

DBMIN algorithm (cont’d)
� Locality sets: each “owns” a set of pages, up to a limit l
� Global free list: set of “orphan” pages
� Global table: allow sharing among concurrent queries
� Query q requests page p
� If p is in memory and in q’s locality set

• Just update usage statistics of p

� If p is in memory and in some other query’s locality set
• Just make p available to q; no further action is required

� If p is in memory and in the global free list
• Add p to q’s locality set; if q’s locality set exceeds its size limit, replace a 

page (release it back to the global free list)

� If p is not in memory
• Use a page from global free list to get p in; proceed as in the previous case

27

Locality sets for various ref. patterns

� Straight sequential
� Size = 1

� Just replace as needed

�Clustered sequential
� Size = number of pages in the largest cluster

� FIFO or LRU (assuming large enough size)

� Looping sequential
� Size = number of pages in the table

� MRU

28

Locality sets for more ref. patterns
� Independent random
� Size = 1 (if odds of revisit is low), or
b (expected number of block accessed 
by a given number k of random 
record accesses; Yao, 1977)

• Use (k – b) / b to choose between 1 and b

� Replacement policy does not matter

� Clustered random
� Size = number of blocks in the 

largest cluster (≈ number of tuples 
because of random access, or use 
Yao’s formula)

� LRU or FIFO

29

Locality sets for more ref. patterns
� Straight hierarchical, hierarchical/straight sequential: just 

like straight sequential
� Size = 1
� Just replace as needed

� Hierarchical/clustered sequential: like clustered sequential
� Size = number of index pages in the largest cluster
� FIFO or LRU

� Looping hierarchical
� At each level of the index you have random access among pages
� Use Yao’s formula to figure out how many pages need to be 

accessed at each level
� Size = sum over all levels that you choose to worry about
� LIFO with 3-4 buffers should be okay

30

Simulation study

�Hybrid simulation model
� Trace-driven simulation

• Recorded from a real system (running Wisconsin Benchmark)

• For each query, record its execution trace
– Page read/write, file open/close, etc.

� Distribution-driven simulation
• Generated by some stochastic model

• Synthesize the workload by merging query execution traces

� Simulator models CPU, memory, and one disk

� Performance metric: query throughput



6

31

Workload

�Mix 1: all six types equally likely
�Mix 2: I and II together appear 50% of the time
�Mix 3: I and II together appear 75% of the time

32

Mix 1 (no data sharing)
� Thrashing is evident 

for simple algorithms 
with no load control

� Working set (a popular 
OS choice) fails to 
capture join loops for 
queries with high 
memory demand (types 
V and VI)
� It still functions 

(though suboptimally) 
with large number of 
current queries (NCQ)

DBMIN

Hot set

Working set

33

Mix 3 (no data sharing)

�Thrashing is still 
evident

�Working set fares 
better because mix 3 
has more simple 
queries and fewer 
ones of types V and 
VI

DBMIN

Hot set

Working set

34

Mix 1 (full data sharing) 

�With full data 
sharing, locality is 
easier to capture
� Performance 

improves across the 
board and the gap 
disappears

� Random and FIFO 
do not capture 
locality as effectively 
as others

DBMIN and others

Random and FIFO

35

Mix 3 (full data sharing)

� Performance starts 
to diverge again
� Mix 3 is dominated 

by lots of small 
queries, and locality 
becomes harder to 
capture

DBMIN

Hot set

Working set
Clock

Random/FIFO

36

Feedback load control

�Mechanism to check resource usage in order to 
prevent system from overloading

� Rule of thumb: “50% rule”—keep the paging 
device busy half of the time

� Implementation
� Estimator measures the utilization of device

� Optimizer analyzes measurements and decides 
whether/what load adjustment is appropriate

� Control switch activates/deactivates processes according 
to optimizer’s decisions



7

37

Mix 1 (load control, no data sharing)

� DBMIN still the best

� (Simple algorithms + 
load control) 
outperforms working 
set!

� Cons of feedback load 
control
� Runtime overhead

� Non-predictive
• Only responds after 

undesirable condition 
occurs

DBMIN

Working set

38

Conclusion

� Same basic access patterns come up again and again 
in query processing

�Make buffer manager aware of these access patterns

)Look at the workload, not just the content
� Contents can at best offer guesses at likely workloads


