Indexing: Part III

CPS 216

Advanced Database Systems

Announcements (February 15)

< Homework #1 graded
= Verify your grades on Blackboard
< Homework #2 assigned today
® Due in 2V weeks
< Reading assignments for this and next week
= “The” query processing survey by Graefe
® Due next Wednesday

% Midterm and course project proposal in 3" weeks

Static hashing

With records or

record pointers

bucket 0 bucket 7

bucket 1

hash buck
key —| function |— "¢ €t
b numbe1\ pe
bucket 7

What if a bucket is full?
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Does it make sense to use a hash-based index
as a sparse index on a sorted table?

Performance of static hashing

< Depends on the quality of the hash function!
® Best (hopefully average) case: one I/O!
= Worst case: all keys hashed into one bucket!
= See Knuth vol. 3 for good hash functions
< Rule of thumb: keep utilization at 50%-80%
< How do we cope with growth?
= Extensible hashing

= Linear hashing

Extensible hashing (TODS 1979)

+ Idea 1: use 7 bits of output by hash function and
dynamically increase 7 as needed
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< Problem: ++7 = double the number of buckets!

% Idea 2: use a directory
= Just double the directory size
® Many directory entries can point to the same bucket
® Only split overflowed buckets

“One more level of indirection solves everything!”

Extensible hashing example (slide 1)

% Insert £ with A(k) = 0101
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% Bucket too full?

= + +local depth, split bucket, and + +global
depth (double the directory size) if necessary

= Allowing some overflow is fine too




Extensible hashing example (slide 2)

< Insert 1110, 0000
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+ Split again

= No directory doubling this time

Extensible hashing example (slide 3)
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Extensible hashing example (slide 4)
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Summary of extensible hashing

< Pros
® Handles growing files
= No full reorganization
< Cons
= One more level of indirection
= Directory size still doubles
= Sometimes doubling is not enough!

00001101 Directory size X16!

01001101 A quick and dirty fix?
11001101

Linear hashing (V'LDB 1980)

< Grow only when utilization exceeds a given
threshold
< No extra indirection

® Some extra math to figure out the right bucket
Insert 0101

0 1 Threshold exceeded; grow!
0000 1111
1010 0101

i =1 Number of bits in use = [ log,» |
7 = 2 Number of primary buckets

Linear hashing example (slide 2)

% Grows linearly (hence the name)
% Always split the (z — 2l°82))-th bucket (0-based index)
®= Intuitively, the first bucket with the lowest depth

= Not necessarily the bucket being inserted into!

Insert 0001 Insert 1100
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Linear hashing example (slide 3)

Insert 1110
Threshold exceeded; grow!
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Linear hashing example (slide 4)

< Look up 1110
= Bucket 110 (6-th bucket) is not here
= Then look in the (6 — 2l°82])-th bucket (= 2nd)

000 01 10 11 100
0000 0001 1010 1111 1100
0101 1110
i=3
n=>5

Summary of linear hashing

< Pros

® Handles growing files

= No full reorganization

= No extra level of indirection
< Cons

= Still has overflow chains

= May not be able to split an overflow chain right away because
buckets must be split in sequence
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Hashing versus B-trees

< Hashing is faster on average, but the worst case can
be really bad

< B-trees provide performance guarantees, and they
are not that tall in practice

< Hashing destroys order!

< B-trees provide order and support range queries




