Indexing: Part III

CPS 216

Advanced Database Systems

Announcements (February 15)

< Homework #1 graded
= Verify your grades on Blackboard
< Homework #2 assigned today
® Due in 2V weeks
< Reading assignments for this and next week
= “The” query processing survey by Graefe
® Due next Wednesday

% Midterm and course project proposal in 3" weeks

Static hashing

With records or

record pointers

bucket 0 bucket 7

bucket 1

hash buck
key —| function |— "¢ €t
b numbe1\ pe
bucket 7

What if a bucket is full?

bucket
N-1

Does it make sense to use a hash-based index
as a sparse index on a sorted table?

Performance of static hashing

< Depends on the quality of the hash function!
® Best (hopefully average) case: one I/O!
= Worst case: all keys hashed into one bucket!
= See Knuth vol. 3 for good hash functions
< Rule of thumb: keep utilization at 50%-80%
< How do we cope with growth?
= Extensible hashing

= Linear hashing

Extensible hashing (TODS 1979)

+ Idea 1: use 7 bits of output by hash function and
dynamically increase 7 as needed

h) [olil1lol1]ol1]1]
7

< Problem: ++7 = double the number of buckets!

% Idea 2: use a directory
= Just double the directory size
® Many directory entries can point to the same bucket
® Only split overflowed buckets

“One more level of indirection solves everything!”

Extensible hashing example (slide 1)

% Insert £ with A(k) = 0101

Global Directory Buckets
depth T 1
(always the max 0 1000
of local depths) 1 Local
depth
\ 1] 1001

001hi01

% Bucket too full?

= + +local depth, split bucket, and + +global
depth (double the directory size) if necessary

= Allowing some overflow is fine too

Extensible hashing example (slide 2)

< Insert 1110, 0000

Dircctory/ Buckets Directory
LINgA~ 1 1000 femg 00
1 111Gy I~ (1)0
1
/7 \ 2l 1001 /// "
0101
21 0011 ‘//’///,

+ Split again

= No directory doubling this time

Extensible hashing example (slide 3)

Buckets
< Insert 0001 21 1000
0000
\ Directory
2l 1110 21N 00
01
21 1001 /// 1
010101,
2l 0011

Extensible hashing example (slide 4)

Buckets

21 1000
g, L0 N
Directory Directory
000 21 1110 00
100: % [~
010 -
110 1001 / 11
woi——1 o001 /
101
011 . 2l o011 Delete is just the reverse:
11— If bucket is too empty,
merge with sibling bucket,
otot — — local depth;

and half the directory

if possible, — — global depth

10

Summary of extensible hashing

< Pros
® Handles growing files
= No full reorganization
< Cons
= One more level of indirection
= Directory size still doubles
= Sometimes doubling is not enough!

00001101 Directory size X16!

01001101 A quick and dirty fix?
11001101

Linear hashing (V'LDB 1980)

< Grow only when utilization exceeds a given
threshold
< No extra indirection

® Some extra math to figure out the right bucket
Insert 0101

0 1 Threshold exceeded; grow!
0000 1111
1010 0101

i =1 Number of bits in use = [log,» |
7 = 2 Number of primary buckets

Linear hashing example (slide 2)

% Grows linearly (hence the name)
% Always split the (z — 2l°82))-th bucket (0-based index)
®= Intuitively, the first bucket with the lowest depth

= Not necessarily the bucket being inserted into!

Insert 0001 Insert 1100

00 1 10 Threshold exceeded; grow!
0000 1111 1010
1100 0101
) 1
=Y 0001
n=3

Linear hashing example (slide 3)

Insert 1110
Threshold exceeded; grow!

00 01 10 11
0000 0001 1010 1111
1100 0101 1110

i=2
n=4

Linear hashing example (slide 4)

< Look up 1110
= Bucket 110 (6-th bucket) is not here
= Then look in the (6 — 2l°82])-th bucket (= 2nd)

000 01 10 11 100
0000 0001 1010 1111 1100
0101 1110
i=3
n=>5

Summary of linear hashing

< Pros

® Handles growing files

= No full reorganization

= No extra level of indirection
< Cons

= Still has overflow chains

= May not be able to split an overflow chain right away because
buckets must be split in sequence

[empty [empty J[empey][full J[empty J[empey J[empey |

full

Hashing versus B-trees

< Hashing is faster on average, but the worst case can
be really bad

< B-trees provide performance guarantees, and they
are not that tall in practice

< Hashing destroys order!

< B-trees provide order and support range queries

