Indexing: Part IT

CPS 216

Advanced Database Systems

Announcements (February 8)

< Homework #1 due today
% No class this Thursday (February 10)
< Reading assignments this week
= Generalized search trees (due next Tuesday)

= “The” Google paper (due next Thursday)

R-trees

< B-tree: balanced hierarchy of 1-d ranges

(—», 100) [10Q, =)

E g 88| [, 3030, 100)][[100, 120)[120, 150)[150,, 180) [189, =)|
¥ N } [\ \

< R-tree: balanced hierarchy of #-d ranges

1

R-tree lookup

< Which ranges contain me?é}i

[rr 148 kr]

< Problem: search may go down many paths

= Because regions may overlap

= No performance guarantee like B-tree

R-tree insertion

Insert Ry into R-tree
% Start from the root

% Pick a region containing R, and follow the child pointer
= If none contains Ry, pick one and grow it to contain R,

= Pick the one that requires the least enlargement (why?)

[r &, || & & #%]

R-tree insertion: split DDI:I
< If a node is too full, split O
< Try to minimize the total area of bounding boxes

= Exhaustive: try all possible splits

® Quadratic: “seed” with the most wasteful pair; iteratively assign
regions with strongest “preference”

= Linear: “seed” with distant regions; iteratively assign others as
Quadratic

R-tree insertion: split (cont’d)

+ Split could propagate all the way up to the root (not
shown in this example)

[r & [& |& R,

R*-tree

< R-tree

= Always tries to minimize the area of bounding boxes
® Quadratic splitting algorithm encourages small seeds
and possibly long and narrow bounding boxes

% R*-tree (Beckmann et al., SIGMOD 1990)

® Consider other criteria, e.g.

* Minimize overlap between bounding boxes

* Minimize the margin (perimeter length) of a bounding box
= Forced reinserts

* When a node overflows, reinsert “outer” entries

* They may be picked up by other nodes, thus saving a split

R -tree

+ Problem with R-tree
= Regions may overlap
= Search may go down many paths
< RT-tree (Sellis et al., VLDB 1987)
= Regions in non-leaf nodes do not overlap
= Search only goes down one path
= Duplicate items in leaves

® But an insertion must now go down many paths!

® R must be inserted into all R -tree leaves whose bounding
boxes overlap with R

= A bigger tree

10

Review

% Tree-structured indexes
= [SAM
= B-tree and variants
= R-tree and variants

= Can we generalize? GiST!

Indexing user-defined data types

% Specialized indexes (ABCDEFG trees...)
® Redundant code: most trees are very similar
= Concurrency control and recovery especially tricky to get right
< Extensible B-trees and R-trees
= Examples: B-trees in Berkeley DB, B- and R-trees in Informix
= User-defined compare() function
= GiST (Generalized Search Trees)
= General (covers B-trees, R-trees, etc.)
= Easy to extend

® Built-in concurrency control and recovery

Structure of GiST

Balanced tree of {p, ptr) pairs

< p is a key predicate that holds for all objects found
below ptr

< Every node has between #M and M index entries. ..
= £ must be no more than ¥ (why?)
< Except root, which only needs at least two children

% All leaves are on the same level

@ User only needs to define what key predicates are

Defining key predicates

< boolean Consistent(entry entry, predicate guery)

= Return true if an object satisfying gzery might be found under entry
< predicate Union(set<entry> entries)

® Return a predicate that holds for all objects found under entries
% real Penalty(entry entryl, entry entry2)

= Return a penalty for inserting entry2 into the subtree rooted at
entryl

< (set<entry>, set<entry>) PickSplir(set<entry> entries)

= Given M+1 entries, split it into two sets, each of size at least £M

Index operations

% Search

= Just follow pointer whenever Consistent() is true
< Insert

= Descent tree along least increase in Penalty()

= If there is room in leaf, insert there; otherwise split according to

PickSpli()

= Propagate changes up using Union()
% Delete

= Search for entry and delete it

= Propagate changes up using Union()

= On underflow

* If keys are ordered, can borrow/coalesce in B-tree style

* Otherwise, reinsert stuff in the node and delete the node

GiST over R (B"-tree)

< Logically, keys represent ranges [x,)
% Query: find keys that overlap with [z, 6)
< Consistent(entry, {a, b)): say entry has key {x, y)
= x <bandy > 4, ie., overlap
< Union(entries): say entries = {[xl-, y,)}
= [min({x,}), max({y,}))
< Penalty(entry,, entry,): say they have keys [x,, y,) and [x,, y,)
= max(y, —y;, 0) + max(x, — x,, 0), except boundary cases
% PickSplit(entries)
= Sort entries and split evenly

< Plus a special Compare(entry, entry) for ordered keys

Key compression

% Without compression, GiST would need to store a
range instead of a single key value in order to
support Bt-tree

% Two extra methods: Compress/Decompress

% For B*-tree

= Compress(entry): say entry has key {x, y)
* x, assuming next entry starts with y, except boundary cases
= Decompress((x, pz‘r})
* {x, y), assuming next entry starts with y, except boundary cases

@ This compression is lossless: Decompress(Compress(e)) = e

GiST over R? (R-tree)

< Logically, keys represent bounding boxes
< Query: find stuff that overlaps with a given box
Abusing notation a bit below...
% Consistent(key _box, query box)
= key_box overlaps with guery box
% Union(boxes)
® Minimum bounding box of boxes
< Penalty(box,, box,)
* Area of Union({box,, box,}) — area of box,
% PickSplit(boxes)
= R-tree algorithms (e.g., minimize total area of bounding boxes)
< Compare(box, box)?

GiST over P(Z) (RD-tree)

Logically, keys represent sets

2
<&

ES

Queries: find all sets that intersect with a given set

ES

Consistent(key_set, query_set)
= key_set intersects with guery_set

%

Union(sets)

P

= Union of sets

ES

Penalty(set,, set,)
u | Union({set,, set,}) | — | set, |
PickSplit(sets)
® Much like R-tree (e.g., minimize total cardinality)
Compare(set, set)?
Compress/Decompress: bloomfilters, rangesets, etc.
= Decompress(Compress(set)) ? set
= Lossy: Decompress(Compress(set)) 2 set

o

&

o

Next

< Hash-based indexing

< Text indexing

